Chord method is used for finding root of the function in given interval.

## Algorithm:

```IN:
Function f, which is continous function and interval [a,b]. Function must satisfy given equation: f(a) * f(b) < 0 - signs of that values are different, which means that given function in given interval has at least one root in interval [a,b].
OUT:
Root in given interval.
1. Calculate x = (a * f(b) - b* f(a)) / (f(b) - f(a));
2. Check if abs(f(x)) < precision.
3. If it is end algorithm and return x.
4. Check if f(a) * f(x) < 0.
5. If it is make x = (x * f(a) - a* f(x)) / (f(a) - f(x)).
6. Else make x = (x * f(b) - b * f(x)) / (f(b) - f(x)).
7. Go to step 2.```

## Sample Output:

```f(x) = x * (x + 2) -1
[-3, 0]

root: -2.414201183431953```

## Chord Method Step By Step

Iteration Numberabxf(xn)
1-30-1-2
2-30-2-1
3-30-2.3333333333333335-0.22222222222222188
4-30-2.4-0.04000000000000026
5-30-2.4117647058823533 -0.006920415224912602
6-30-2.413793103448276-0.0011890606420928984
7-30-2.4141414141414144-2.0406081012080968E-4
8-30-2.414201183431953 -3.501277966366789E-5

## Pros:

• easy to implement.
• faster than bisection method.
• no need to calculate derivative of given function.

## Cons:

• has trouble with some functions.

Chord Method Algorithm
Tagged on: