Euclidean Algorithm implementation written in Java.

Subtraction-based version:

Iteration version:

import java.util.Scanner;

// © 2017 TheFlyingKeyboard and released under MIT License
// theflyingkeyboard.net

public class GCD {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        int number1;
        int number2;
        
        System.out.print("Enter first number: ");
        number1 = input.nextInt();
        
        System.out.print("Enter second number: ");
        number2 = input.nextInt();
        
        System.out.println("GCD of " + number1 + " and " + number2 + " is equal to " + gcd(number1, number2));
    }
    
  static int gcd(int a, int b){
    while(a != b){
      if(a > b){
        a = a - b;
      }else{
        b = b - a;
      }
    }
    
    return a;
  }
}

Recursive version:

import java.util.Scanner;
 
// © 2017 TheFlyingKeyboard and released under MIT License
// theflyingkeyboard.net

public class GCD {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        int number1;
        int number2;
        
        System.out.print("Enter first number: ");
        number1 = input.nextInt();
        
        System.out.print("Enter second number: ");
        number2 = input.nextInt();
        
        System.out.println("GCD of " + number1 + " and " + number2 + " is equal to " + gcd(number1, number2));
    }
    
  static int gcd(int a, int b){
    if(a > b){
        return gcd(a - b, b);
      }else if(a < b){
        return gcd(a, b - a);
      }else{
        return a;
      } 
    }
}

Division-based version:

Iteration version:

import java.util.Scanner;

// © 2017 TheFlyingKeyboard and released under MIT License
// theflyingkeyboard.net

public class GCD {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        int number1;
        int number2;
        
        System.out.print("Enter first number: ");
        number1 = input.nextInt();
        
        System.out.print("Enter second number: ");
        number2 = input.nextInt();
        
        System.out.println("GCD of " + number1 + " and " + number2 + " is equal to " + gcd(number1, number2));
    }
    
  static int gcd(int a, int b){
    int t;
    
    while(b != 0){
      t = b;
      b = a % b;
      a = t;
    }
    
    return a;
  }
}

Recursive version:

import java.util.Scanner;

// © 2017 TheFlyingKeyboard and released under MIT License
// theflyingkeyboard.net

public class GCD {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        int number1;
        int number2;
        
        System.out.print("Enter first number: ");
        number1 = input.nextInt();
        
        System.out.print("Enter second number: ");
        number2 = input.nextInt();
        
        System.out.println("GCD of " + number1 + " and " + number2 + " is equal to " + gcd(number1, number2));
    }
    
  static int gcd(int a, int b){
    if(b == 0){
        return a;
      }
      else{
        return gcd(b, a % b);
      }
    }
}

 



Java Euclidean Algorithm
Tagged on:     

Leave a Reply

Your email address will not be published. Required fields are marked *

By continuing to use the site, you agree to the use of cookies. You can read more about it the Cookies&Privacy Policy Section Above. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. You can read more about it the Cookies&Privacy Policy Section.

Close