Simple exercises about creating truth tables of logic gates schemes.

Exercise: Create truth tables for the following logic gates schemes.

#### Scheme: Easy I-1

Hint: Scheme Equation

Y = P0 NAND B = (NOT A) NAND B

Solution

## Scheme: Easy I-1 Truth Table

A | B | P0 (NOT A) | Y (P0 NAND B) |
---|---|---|---|

0 | 0 | 1 | 1 |

0 | 1 | 1 | 0 |

1 | 0 | 0 | 1 |

1 | 1 | 0 | 1 |

#### Scheme: Easy I-2

Hint: Scheme Equation

Y = P0 XOR P1 = (NOT A) XOR (NOT P0) = (NOT A) XOR (NOT(NOT A))= (NOT A) XOR A

Solution

## Scheme: Easy I-2 Truth Table

A | P0 (NOT A) | P1 (NOT P0) | Y (P0 XOR P1) |
---|---|---|---|

0 | 1 | 0 | 1 |

1 | 0 | 1 | 1 |

#### Scheme: Easy I-3

Hint: Scheme Equation

Y = P0 AND B = (A OR B) AND B

Solution

## Scheme: Easy I-3 Truth Table

A | B | P0 (A OR B) | Y (P0 AND B) |
---|---|---|---|

0 | 0 | 0 | 0 |

0 | 1 | 1 | 1 |

1 | 0 | 1 | 0 |

1 | 1 | 1 | 1 |

#### Scheme: Easy I-4

Hint: Scheme Equation

Y = P0 AND B = (A NOR A) AND B

Solution

## Scheme: Easy I-4 Truth Table

A | B | PO (A NOR A) | Y (P0 AND B) |
---|---|---|---|

0 | 0 | 1 | 0 |

0 | 1 | 1 | 1 |

1 | 0 | 0 | 0 |

1 | 1 | 0 | 0 |

#### Scheme: Easy I-5

Hint: Scheme Equation

Y = P1 OR B = (P0 XNOR B) OR B = ((NOT A) XNOR B) OR B

Solution

## Scheme: Easy I-5 Truth Table

A | B | P0 (NOT A) | P1 (P0 XNOR B) | Y (P1 OR B) |
---|---|---|---|---|

0 | 0 | 1 | 0 | 0 |

0 | 1 | 1 | 1 | 1 |

1 | 0 | 0 | 1 | 1 |

1 | 1 | 0 | 0 | 1 |

Logic Gates Exercises: Easy I