All logic gates can be created using NOR logic gates.

#### NOT Gates Y = A NOR A

## NOT From NOR Truth Table

AY (A NOR A)
01
10

#### OR Gates

OR gates from NOR gates are basically negated NOR gates. Y = P0 NOR P0 = (A NOR B) NOR (A NOR B)

## OR From NOR Truth Table

ABP0 (A NOR B)Y (P0 NOR P0)
0010
0101
1001
1101

#### AND Gates Y = P0 NOR P1 = (A NOR A) NOR (B NOR B)

## AND From NOR Truth Table

ABP0 (A NOR A)P1 (B NOR B)Y (P0 NOR P1)
00110
01100
10010
11001

#### NAND Gates

NAND gates are basically negated AND gates. Y = P3 NOR P3 = (P0 NOR P0) NOR (P1 NOR P1) = ((A NOR A) NOR (A NOR A)) NOR ((B NOR B) NOR (B NOR B))

## NAND From NOR Truth Table

ABP0 (A NOR A)P1 (B NOR B)P2 (P0 NOR P1)Y ( P2 NOR P2)
001101
011001
100101
110010

#### XOR Gates Y = P2 NOR P3 = (P0 NOR P1) NOR (B NOR A) = ((A NOR A) NOR (B NOR B)) NOR (B NOR A)

## XOR From NOR Truth Table

ABP0 (A NOR A)P1 (B NOR B)P2 (P0 NOR P1)P3 (A NOR B)Y (P2 NOR P3)
0011010
0110001
1001001
1100100

#### XNOR Gates

XNOR gates are basically negated XOR gates. Y = P1 NOR P2 = (A NOR P0) NOR (P0 NOR B) = (A NOR (A NOR B)) NOR ((A NOR B) NOR B)

## XNOR From NOR Truth Table

ABP0 (A NOR B)P1 (A NOR P0)P2 (P0 NOR B)Y (P1 NOR P2)
001001
010100
100010
110001

Logic Gates From NOR (NOR Logic)
Tagged on: