All logic gates can be created using NOR logic gates.

#### NOT Gates

Y = A NOR A

## NOT From NOR Truth Table

A | Y (A NOR A) |
---|---|

0 | 1 |

1 | 0 |

#### OR Gates

OR gates from NOR gates are basically negated NOR gates.

Y = P0 NOR P0 = (A NOR B) NOR (A NOR B)

## OR From NOR Truth Table

A | B | P0 (A NOR B) | Y (P0 NOR P0) |
---|---|---|---|

0 | 0 | 1 | 0 |

0 | 1 | 0 | 1 |

1 | 0 | 0 | 1 |

1 | 1 | 0 | 1 |

#### AND Gates

Y = P0 NOR P1 = (A NOR A) NOR (B NOR B)

## AND From NOR Truth Table

A | B | P0 (A NOR A) | P1 (B NOR B) | Y (P0 NOR P1) |
---|---|---|---|---|

0 | 0 | 1 | 1 | 0 |

0 | 1 | 1 | 0 | 0 |

1 | 0 | 0 | 1 | 0 |

1 | 1 | 0 | 0 | 1 |

#### NAND Gates

NAND gates are basically negated AND gates.

Y = P3 NOR P3 = (P0 NOR P0) NOR (P1 NOR P1) = ((A NOR A) NOR (A NOR A)) NOR ((B NOR B) NOR (B NOR B))

## NAND From NOR Truth Table

A | B | P0 (A NOR A) | P1 (B NOR B) | P2 (P0 NOR P1) | Y ( P2 NOR P2) |
---|---|---|---|---|---|

0 | 0 | 1 | 1 | 0 | 1 |

0 | 1 | 1 | 0 | 0 | 1 |

1 | 0 | 0 | 1 | 0 | 1 |

1 | 1 | 0 | 0 | 1 | 0 |

#### XOR Gates

Y = P2 NOR P3 = (P0 NOR P1) NOR (B NOR A) = ((A NOR A) NOR (B NOR B)) NOR (B NOR A)

## XOR From NOR Truth Table

A | B | P0 (A NOR A) | P1 (B NOR B) | P2 (P0 NOR P1) | P3 (A NOR B) | Y (P2 NOR P3) |
---|---|---|---|---|---|---|

0 | 0 | 1 | 1 | 0 | 1 | 0 |

0 | 1 | 1 | 0 | 0 | 0 | 1 |

1 | 0 | 0 | 1 | 0 | 0 | 1 |

1 | 1 | 0 | 0 | 1 | 0 | 0 |

#### XNOR Gates

XNOR gates are basically negated XOR gates.

Y = P1 NOR P2 = (A NOR P0) NOR (P0 NOR B) = (A NOR (A NOR B)) NOR ((A NOR B) NOR B)

## XNOR From NOR Truth Table

A | B | P0 (A NOR B) | P1 (A NOR P0) | P2 (P0 NOR B) | Y (P1 NOR P2) |
---|---|---|---|---|---|

0 | 0 | 1 | 0 | 0 | 1 |

0 | 1 | 0 | 1 | 0 | 0 |

1 | 0 | 0 | 0 | 1 | 0 |

1 | 1 | 0 | 0 | 0 | 1 |