All logic gates can be created using NOR logic gates.
NOT Gates
Y = A NOR A
NOT From NOR Truth Table
A | Y (A NOR A) |
---|---|
0 | 1 |
1 | 0 |
OR Gates
OR gates from NOR gates are basically negated NOR gates.
Y = P0 NOR P0 = (A NOR B) NOR (A NOR B)
OR From NOR Truth Table
A | B | P0 (A NOR B) | Y (P0 NOR P0) |
---|---|---|---|
0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 |
AND Gates
Y = P0 NOR P1 = (A NOR A) NOR (B NOR B)
AND From NOR Truth Table
A | B | P0 (A NOR A) | P1 (B NOR B) | Y (P0 NOR P1) |
---|---|---|---|---|
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 |
NAND Gates
NAND gates are basically negated AND gates.
Y = P3 NOR P3 = (P0 NOR P0) NOR (P1 NOR P1) = ((A NOR A) NOR (A NOR A)) NOR ((B NOR B) NOR (B NOR B))
NAND From NOR Truth Table
A | B | P0 (A NOR A) | P1 (B NOR B) | P2 (P0 NOR P1) | Y ( P2 NOR P2) |
---|---|---|---|---|---|
0 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 |
XOR Gates
Y = P2 NOR P3 = (P0 NOR P1) NOR (B NOR A) = ((A NOR A) NOR (B NOR B)) NOR (B NOR A)
XOR From NOR Truth Table
A | B | P0 (A NOR A) | P1 (B NOR B) | P2 (P0 NOR P1) | P3 (A NOR B) | Y (P2 NOR P3) |
---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
XNOR Gates
XNOR gates are basically negated XOR gates.
Y = P1 NOR P2 = (A NOR P0) NOR (P0 NOR B) = (A NOR (A NOR B)) NOR ((A NOR B) NOR B)
XNOR From NOR Truth Table
A | B | P0 (A NOR B) | P1 (A NOR P0) | P2 (P0 NOR B) | Y (P1 NOR P2) |
---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 1 |